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Probit Latent Class Analysis:  Conditional Independence and Conditional Dependence Models
Abstract
This paper describes flexible methods that relax restrictive conditional independence assumptions of latent class analysis (LCA) and have a variety of potential applications.  Dichotomous or ordered category manifest variables are viewed as discretized latent continuous variables; the latent continuous variables are assumed to have a mixture-of-multivariate-normals distribution.  Within a latent class, conditional dependence is modeled as mutual association of all or some latent continuous variables with a continuous latent trait (or, in special cases, multiple latent traits).  The relaxation of conditional independence assumptions allows for more realistic use of LCA in the identification of natural taxa.  Comparisons of certain restricted and unrestricted models permit statistical tests of various aspects of latent taxonic structure.  Latent class analysis, latent trait analysis, and latent distribution analysis can be viewed as special cases of the model.  The relationship between the present and Rost's (1990; 1991) mixed Rasch model is discussed.  Two examples illustrate use of the approach.  
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1  INTRODUCTION
Latent class analysis (LCA; Clogg, 1995; Goodman, 1974; Lazarsfeld & Henry, 1968; McCutcheon, 1987), a well-known statistical method used to find latent classes (subgroups or natural taxa) with categorical data, is limited by the restrictive assumption that all variables are independent within each latent class.  Unless one is very fortunate, such that the variables to be analyzed have this characteristic, or unless can identify and omit the variables that do not, standard LCA may not reveal the true taxonic structure of data.  Extra, "spurious" latent classes may emerge as a way to reconcile the data structure to the restrictive assumptions, and, in general, the fit of a model with a given number of latent classes to the data will be underestimated.  This paper presents new LCA methods for dichotomous and ordered category data to overcome this limitation.  We shall first reparameterize the usual LCA model.  The reparameterization is itself of some interest.  But it also leads directly to a flexible way to relax conditional independence assumptions, for all variables simultaneously (Section 2.2) or only some (Section 4).  

Some special cases of the approach described here are discussed or alluded to by Mislevy (1984), Qu, Tan, and Kutner (1996), Uebersax (1993a), and Uebersax and Grove (1993).  Also related, though different, are certain logistic latent class models (for discussion of logistic latent class models in general, see Formann, e.g., 1992; Heinen, 1996).  Rost's (1988; 1990; 1991) Rasch-type models, of special interest here, are discussed in Section 2.3.  
Other restricted LCA approaches for ordered category data are described by Clogg (1979) and Croon (1990).  Hagenaars (1988) gives valuable discussion on conditional independence and conditional dependence in LCA (see Section 4 here).  

Some terms should be initially clarified to avoid potential ambiguity.  First, conditional independence/dependence here means specifically independence/dependence of manifest variables conditional on latent class.  If, as will be subsequently explained, there is a latent trait within a latent class, the manifest variables may be dependent conditional on latent class, yet, following basic assumptions of latent trait analysis (Lazarsfeld & Henry, 1968), independent conditional on latent trait level; in this case, we will continue to refer to the measures as conditionally dependent, meaning dependent conditional on latent class.  Second, it should be explicitly stated that here we use a somewhat broad definition of a latent class.  In some discussions, it is assumed, as a matter of definition, that, within a latent class, variables must be independent; here, however, we allow that variables may be dependent within a latent class.

2  MODEL
The basic conceptual model is quite easily described:  (1) manifest variables are viewed as discretized latent continuous variables; and (2) in each latent class, the latent continuous variables have a multivariate normal distribution.  Thus, latently, there is a mixture of multivariate normal distributions (Day, 1969; Wolfe, 1970), each distribution corresponding to a different latent class.  

This model is due to Everitt (1988), Everitt and Merette (1990), and Henkelman, Kay, and Bronskill (1990).  Model parameters are the means, variances, and covariances of the latent continuous distributions, the mixing proportions, and the discretizing threshold values.  All the probit models herein are special cases of this model.

2.1  The Probit Latent Class Model
The above model may now be specified more precisely.  Let Xj (j = 1, ..., J) denote one of J dichotomous or ordered category manifest variables and let Yj (j = 1, ..., J) denote a latent continuous variable that corresponds to Xj.  Let c (c = 1, ..., C) index latent classes, and let k (k = 1, ..., K) index ordered rating levels; for simplicity of exposition, we assume that each manifest variable has the same number of rating levels (K), though the model itself does not require this.  

K ‑ 1 thresholds (tj2, ..., tjK) discretize each Yj.  When K > 2, one may distinguish two model variations.  Common thresholds models assume threshold values are the same for all latent classes.  Varying thresholds models let thresholds differ across latent classes.  Except where noted, we assume herein common thresholds.

The latent continuous variables, as noted above, are assumed to have a multivariate normal distribution within each latent class c, each distribution with centroid parameters jc (j = 1, ..., J) and J-by-J variance/covariance matrix c (with diagonal elements jc2 and off-diagonal elements jj'c).  The Everitt/Henkelman model, referred to in the preceding section, does not restrict covariances jj'c.  However, we shall initially consider the restriction jj'c = 0 for all j  j' and all c, which greatly simplifies estimation.  At the level of the latent continuous variables, this is equivalent to the latent profile model of Lazarsfeld & Henry, 1968).  We term this simplified model probit latent class analysis, or PLCA.  

Let xs = (xs1, ... xsJ) denote the s'th (of S) unique response patterns over manifest variables.  Let ps|c denote the probability of observing xs given a member of latent class c.  Conditional independence here means that
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ps|c
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where jkc is the conditional probability of observing level k on Xj, given a member of class c.  The unconditional probability of xs is

                    
  
  C
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where c (c = 1, ..., C; c = 1) is the prevalence of latent class c.  Eqs. (1) and (2) define the usual unrestricted LCA model.

The probit latent class model makes
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(zk+1) ‑ (zk)

1 < k < K  
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1 ‑ (zK)    

k = K,

where () is the standard normal c.d.f. and the z‑score zk = (tjk - jc)/jc.

Dichotomous data are viewed as coded 1 and 2, e.g., 1 = absent, 2 = present.  

Remarks:

1.  At least 2J identifying constraints are always required.  They may be supplied by setting j1 = 0 for all j (fixing origin), and j1 = 1 for all j (fixing scale); the estimated parameters are, then, (C ‑ 1) prevalence (c) terms, J(C ‑ 1) centroid (jc; c > 1) terms, J(C ‑ 1) standard deviation (jc; c > 1) terms, and J(K ‑ 1) threshold (tjk) terms, for a total of (C - 1) + 2J(C - 1) + J(K - 1) estimated parameters.  

2.  Dichotomous data require J(C ‑ 1) additional identifying constraints. These may be supplied by setting jc = 1 for all c > 1 and all j.  With dichotomous data, the PLCA and standard LCA models are equivalent:  they have the same number of estimated parameters, (C - 1) + CJ; simple formulas convert parameter values from one model to the other; and both fit data identically.  One interesting implication is that a standard LCA solution for dichotomous data can, after application of the inverse probit function, be interpreted spatially--i.e., one can represent latent classes by locations in a multidimensional space (Uebersax, 1993c), and simply determine whether latent classes have a unidimensional (Heinen, 1996; Lindsay, Clogg, & Grego, 1991) or multidimensional structure.

3.  When K = 3, both the basic PLCA model and the standard LCA model have (C ‑ 1) + 2CJ independent, estimated parameters; the models are again equivalent in the same sense as above.

4.  With K > 2, one may add jc = 1 for c > 1 and all j as optional constraints.  These constraints are not needed for identification, but are a reasonable simplification and reduce the number of estimated parameters.  In this case the PLCA model is no longer equivalent to, but is a restricted version of, the standard LCA model.

5.  The PLCA model is identified for two-way tables (i.e., problems involving two items), provided the number of response levels for the items give a crossclassification table with sufficient total df to uniquely estimate all parameters.  For example, with two 4-level items, one can estimate a 2-class PLCA model.  With two 3-level items, a 2-class PLCA solution can be estimated by applying the constraints discussed in Remark 4 above.  The unrestricted standard LCA model, by comparison, is intrinsically nonidentified for two-way tables.

6.  For K > 2, one may construct a varying thresholds model by replacing the single set of threshold parameters tjk with C sets of threshold parameters tjkc, one set per latent class.  J(C ‑ 1) new identifying constraints are then required.  These can be supplied as, for example, jc = 0 for c > 1 and all j;  this essentially treats the latent centroids as unknown.  A basic PLCA model with relaxed thresholds is equivalent to the standard LCA model.  

The loglikelihood function (ln L) for the PLCA model is  nsln(ps) where ns is the observed frequency of response pattern xs.  Maximum likelihood (ML) parameter estimates are easily found by using a generalized nonlinear maximization/minimization method, such as a simplex, direct search, or other algorithm that does not require formulaic expressions of derivatives (Press et al., 1989).  Routines implementing such algorithms are available in standard numerical subroutine libraries.  The STEPIT subroutine of Chandler (1969) works well for latent structure models such as the ones described here.  A polynomial approximation is used for () (Press et al., 1989).

Model identification can be checked by verifying full rank of the matrix of second partial derivatives of ‑ln L with respect to the free, independent, estimated model parameters, evaluated at the best (ML) parameter values (van de Pol, Langeheine, & de Jong, 1989); derivatives are estimated with finite differences, i.e., observation of the change in ‑ln L associated with adding (and/or subtracting) a small value to each parameter (Press et al., 1989; van de Pol, Langeheine, & de Jong, 1989).

The asymptotic variance/covariance matrix for parameters is estimated by the inverse of the same matrix of second partial derivatives discussed above (Edwards, 1972; Press et al., 1989; van de Pol, Langeheine, & de Jong, 1989); the square roots of the diagonal elements of the variance/covariance matrix give estimated parameter standard errors.

When they are not equivalent, PLCA is a restricted version of LCA. 

A PLCA solution must adhere to the ordinal structure of response categories (unlike LCA), and may entail fewer parameters, while retaining fit to data.

A given PLCA model is statistically nested under an unrestricted LCA model with the same number of latent classes.  Statistical comparison of a PLCA model with the corresponding unrestricted LCA model (see Section 3) tests the plausibility of the former's probit assumptions.  

Uebersax (1993a) described a restricted LCA model termed located latent class analysis (LLCA).  Similar to models described by Formann (1992), Rost (1988), and Lindsay, Clogg, and Grego (1991), the LLCA model assumes an underlying unidimensional structure to latent classes.  The normal ogive response function version of LLCA is equivalent to adding the following restrictions to the PLCA model:  (1) jc = 1 for c > 1 and all j; and (2) the C latent distribution centroids must fall along a single line (this can be expressed in terms of simple restrictions on jc parameters).  Statistical comparison of an LLCA and corresponding PLCA model tests for unidimensional latent structure (again, see Section 3).  For C = 2, the PLCA and LLCA models are equivalent.

2.2  Relaxing Conditional Independence--Mixed Latent Trait Models
The PLCA model is of some intrinsic interest and potential practical value, for example, in reducing the number of estimated parameters with LCA for ordered category data.  But it is still subject to the basic limitation of the usual LCA model noted at the outset:  that manifest variables are assumed conditionally independent, when we know this is often not the case.  We now expand the model to allow for conditional dependence among manifest variables.  To begin, consider two motivating examples:

1.  A medical researcher has a multi‑item symptom inventory for some disorder and wishes to use LCA to identify patient latent classes.  Suppose that there are, in fact, two real (e.g., genetically‑ or biologically‑based) patient types, e.g., disease‑positive and disease‑negative cases.  Also suppose that, for each type, there is a continuum of general symptom severity; cases at the less severe end of the continuum have a lower probability of experiencing each symptom, and cases at the more severe end have a higher probability of experiencing each symptom.  This situation, quite plausible, violates the conditional independence assumptions of standard LCA, since it implies that, within each latent class, presence of one symptom is associated with a higher probability of presence of other symptoms.  Thus, one would not necessarily expect a standard two‑class LCA model to fit such data.  

2.  Kendler et al. (1996) used LCA to find distinct syndromes of depression.  The manifest variables were occurrence of each of 14 standard symptoms used in the diagnosis of major depression.  While their analysis is exemplary overall, an examination shows that among the 14 specific symptoms there are four pairs of clearly related symptoms:  Increased appetite and Decreased appetite; Weight loss and Weight gain; Insomnia and Hypersomnia; and Psychomotor agitation and Psychomotor retardation.  For each pair, it seems unlikely that occurrence of one symptom is unrelated to occurrence of the other, for any diagnostic category.

In both the above examples, the assumption of conditional independence is violated.  The only way that LCA can accommodate conditional dependencies is to add extra, spurious latent classes that are not truly present at the taxonic level.  Not only does this inflate the number of supposed latent classes, the entire latent class solution becomes susceptible to distortion, and the interpretation of any possibly non-spurious latent classes produced becomes suspect.

If the goal is to identify groups that correspond in meaning and number to reality, then, unless one is very careful in the selection of items, such that conditional dependencies are minimized, then some method is required to account for association of items within latent classes. 

We shall first consider a model to accommodate conditional dependence among all items--the problem portrayed by the first example.  An extension of the method suitable for conditional dependence among only certain items--the situation of the second example, will be presented in Section 4.

We begin by modifying the PLCA model by the assumption of a fundamental dimension of variation within a latent class.  We term this the extended PLCA model or probit mixed latent trait (or, simply, the MLT) model.

Again, the model is a restricted version of the Everitt/Henkelman model. The restrictions can be expressed as requiring latent continuous variable covariances jj'c = jc j'c jc j'c for all j  j' and all c, where, e.g., jc is the correlation of Yj with a continuous latent trait in latent class c.  Thus, jj'c values must conform to a one common factor model within each latent class; correlations 1c, ..., Jc define the latent trait of class c in the same sense that factor loadings define a factor.  The PLCA model is nested within the MLT model, equivalent to restricting jc = 0 for all j and c.

Formally, the measurement model within latent class c is

yij = bjc ic + ijc + jc.             


 



 (4)

Here yij denotes a case i's level on Yj, ic the case's level on the latent trait associated with latent class c, ijc measurement error (unique variation), and bjc the unstandardized coefficient of regression of Yj on c.  We specify c  N(0, 1) and Yj  N(jc, jc).  

As before, the requirement to fix origin and scale is met by fixing j1 = 0 and j1 = 1 for all j.  We focus attention herein on the case where, also, jc = 1 for c > 1 and all j (this may be relaxed when K > 2; see Remark 4 above).  Under these conditions, unstandardized regression coefficient bjc is equal to the correlation jc of Yj and c.  Unless otherwise stated, we assume that such is the case and use the terms bjc and jc interchangeably.   

For the MLT model,

              
            J

ps|c =
  (c)    fjkc(c) dc,        
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where () is the standard normal p.d.f.  Function fjkc() is defined as
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k = 1

fjkc(c) =
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1 ‑ (z'K)           
k = K.

Here z'k means z‑score (jcc ‑ tjk + jc)/jc, where measurement error standard deviation jc = (1 ‑ jc2)1/2.  Eq. (2) then gives values for ps.  One may note the model views responses as locally independent, conditional on the level of c, though, recalling initial discussion, the important concern here is that it allows responses to be dependent, conditional on latent class.

Qu, Tan, and Kutner (1996) derived a model for dichotomous data identical to Eqs. (5) and (2) by random effects assumptions.  The MLT model is also interpretable in item response theory (IRT; Lord & Novick, 1968) terms.  It is equivalent to there being, for each latent class, an IRT model with (i) a normally distributed latent trait; (ii) normal ogive response functions, and (iii) with reference to Eq. (6), the Samejima (1969; 1972) graded response (homogeneous polychotomization) method for modeling ordered categories.  Clearly, when C = 1, the model reduces to a standard IRT model.  

The estimated parameters are (C ‑ 1) latent class prevalence (c) terms, J(C ‑ 1) centroid (jc; c > 1) terms, J(K ‑ 1) threshold (tjk) terms, and CJ correlation (jc) terms.  The loglikelihood function is the same and ML estimates obtained as described in the previous section.  Numerical integration in Eq. (5) can be done with either unweighted or Gauss‑Hermite (see Bock & Aitkin, 1981) quadrature.  Two estimation issues require mention.  First, jc estimates sometimes tend to unity, as with "Heywood cases" in factor analysis.  If this occurs, an expedient is to restrict jc terms to a plausible maximum, e.g., .99 or .995.  Second, one wishes to avoid estimates that correspond to merely a local, rather than the global maximum of the loglikelihood function; it is thus advisable to run the estimation algorithm several times, using, for each run,  different initial parameter estimates, and to verify convergence on the same solution.

An interesting type of constrained MLT model results from assuming that the latent trait is the same--that is, that the relative contribution of each latent continuous variable to the trait's definition is the same--in each latent class.  One model of this type is created by applying the constraints jc = j for all j and c; let MLTa denote this restricted MLT model.

The jc = j restriction requires a qualification, however.  When the latent trait is presumed different in each latent class, the scaling of c is arbitrary, and the assumption var(c) = 1 for all c unproblematic.  If we assume the trait to be the same within each latent class, however, this is no longer so; one may then wish to allow var(c) to differ between latent classes.  However, if var(c) differs between latent classes, one would not expect the correlation jc to be the same in each latent class.  A less restrictive alternative, which we do not pursue here, would instead apply similar equality constraints on unstandardized regression coefficients bjc, and, potentially, on jc terms.  

Another potentially useful constrained model requires jc = c for all j and c; this assumes that all items contribute equally to the definition of a latent trait; we term this the MLTb model.

Latent distribution analysis (LDA; Mislevy, 1984; Uebersax & Grove, 1993; see related discussion in Example 1), with normal ogive response functions, is always a special case (restricted submodel of) the MLT model.  For LDA models that assume all latent trait components have the same variance, the specific restrictions applied to the MLT model are:  (i) the MLTa restrictions on jc; and (ii) the requirement jc = j1 + jdc for all c > 1 and all j, where, dc is the difference between the mean of component 1 and component c on the latent trait dimension.  Restriction (i) requires the latent trait to be the same within all latent classes; restriction (ii) requires the same latent trait to define between-latent class structure.  Thus, a single latent trait defines both within‑ and between‑latent class structure.

2.3  Rost'S Mixed Rasch Model
Rost (1990, 1991) considered latent classes such that a Rasch (1960/1980) model applies for each--this is also interpretable as a type of latent trait mixture.  The differences between the present and Rost's models, which parallel those between normal ogive IRT and Rasch models generally, are, briefly, as follows:

Theoretical model.  Normal ogive response functions follow from the assumption that the latent continuous variables are normally distributed (or, alternatively, that both the latent trait and response error are normally distributed).  Rasch (1960/1980), on the other hand, suggested mechanisms that find expression as multiplicative (log‑additive) relationships between subject and item parameters, which lead to logistic response functions.  Hence both approaches are based on reasonable models.   Ideally a researcher will have a theoretical basis for choosing either approach for a given application.

Distribution.  The MLT model assumes a normally distributed latent trait in each latent class.  With the mixed Rasch model, the within‑class distribution is "nonparametric" in form and is empirically estimated.

Discrimination parameters.  So-called 1‑parameter latent trait models associate a single type of parameter, i.e., one or more thresholds, with each item.  This is equivalent (or, very similar, depending on the model) to assuming all items have the same latent correlation with the latent trait.  In contrast, 2‑parameter latent trait models also estimate a second parameter (a correlation or comparable term) for each item.  The mixed Rasch model is a 1‑parameter model.  The MLT model, however, is a 2‑parameter approach; this allows the latent trait within each latent class to be defined by a potentially different pattern of jc values. 

Complexity.  Rasch models derive greater computational efficiency from certain mathematical features.  With faster computers, of course, the incremental effort required for normal response function models becomes less an issue.

Despite the differences, for dichotomous data, the standard (i.e., nonmixture) Rasch and 1‑parameter normal response function IRT models usually give similar result (one reason, of course, being the well known similarity in shape between logistic and normal ogive response functions); one would expect correspondingly similar results between the mixed Rasch and MLTb models with dichotomous data.  Example 2 examines this.

3  APPLICATIONS

The MLT approach has both exploratory and confirmatory uses.  The main exploratory use, finding meaningful case subgroups, has potential application in many areas, including personality, psychopathology (and health generally), the study of deviant behavior, and survey research.  As noted earlier, the MLT approach would be expected to recover true case subgroups more accurately than standard LCA when measures are associated within latent classes.

Confirmatory uses include the assessment of fit of a predicted model to data and the drawing of inferences from a statistical comparison of nested models.  Some examples of the latter follow.  Each corresponds to a G2 test (difference likelihood-ratio chi-squared test; Goodman, 1974) of the two specified models, both having the same number of latent classes, with df equal to the difference in the number of estimated parameters for the two models: 

A (PLCA ‑ LCA) comparison tests the assumptions of within‑latent class latent multivariate normality and discretizing thresholds. 

A (LLCA ‑ PLCA) comparison tests whether between‑latent class structure is unidimensional. 

A (PLCA ‑ MLT) comparison tests whether there is systematic variation within latent classes--that is, whether the latent continuous variables are independent or whether they are correlated due to mutual association with a latent trait, within latent classes.

A (LDA ‑ MLT) comparison tests whether a single, unidimensional latent trait defines both within‑ and between‑latent class structure.

For further discussion and examples of such inferences based on comparison of nested latent structure models, see Uebersax (1997).

Rost (1990) recognized that mixed latent trait models permit detection qualitative latent class differences (Meehl, 1992).  The mixed Rasch model reflects such qualitative variation as different thresholds for each latent class.  In the MLT model, the quantities (tjk - jc), interpretable as relative thresholds, i.e., the location of thresholds relative to latent class c, have the same effective meaning.  The MLT approach described here, however, also recognizes a second type of qualitative latent class difference:  different patterns of jc between latent classes indicate a different fundamental dimension of variation in each latent class.

Besides their use for the identification of natural taxa, mixed latent trait models are suited to the assessment of rater agreement and estimation of rating accuracy in the absence of a "gold standard."  Suppose one wishes to evaluate a diagnosis that relies solely on expert judgment and cannot be verified by an objective diagnostic criterion.  One may have several experts diagnose each of a sample of cases, and, provided the diagnosis takes the form of a dichotomous or ordered-category rating, apply the present models, taking the opinions of the different experts as the items 1, ..., J.

With, for example, two latent classes taken as corresponding to disease‑positive and disease‑negative cases, one can apply estimated model parameter values to estimate the sensitivity and specificity of diagnosis, two common measures of diagnostic accuracy (for examples, see Qu, Tan, & Kutner, 1996 and Uebersax & Grove, 1993).  Estimated parameter values can also be used to estimate the area under the receiver operating characteristic (ROC) curve, another measure of diagnostic accuracy (Henkelmen, Kay, & Bronskill, 1990). 

Also, the tetra/polychoric correlation between two raters (or items) j and j', within latent class c, is jc j'c.  A tetra/polychoric correlation can be interpreted as a measure of rater agreement in the sense that it assesses the extent to which the latent continuous variables underlying the raters' discrete judgments are correlated.  With LDA models, one can also estimate the combined within‑ and between‑group latent correlation between raters (Uebersax & Grove, 1993), and, with LLCA models, a related measure of overall latent correlation may be obtained (Uebersax, 1993a).

4  FURTHER EXTENSIONS

We next consider several MLT model variations.  Each can be understood as an instance of a fairly general method.  The method involves the partitioning of items (i.e., the manifest variables) into subsets, as follows:  (1) each item is placed in one and only one of G < J subsets (i.e., the subsets are exclusive and exhaustive); (2) items in different subsets are assumed conditionally independent; and (3) items in the same subset are viewed as conditionally dependent, to a degree determined only by mutual association of their corresponding latent continuous variables with a continuous latent trait.  The subsets, which we denote by braces ({}), may differ by latent class.

For a given latent class c, let g (g = 1, ..., G) index subsets.  We calculate ps|c as product  Ps = P1 P2 ... PG:  if subset g has only one variable, Pg = jkc; if subset g has two or more variables, Pg is equal to the right side of Eq. (5), calculated using only those variables in the subset.  Values for ps|c lead, via Eq. (2), to the loglikelihood function just as in Section 2.  Remark:  When a subset has only two variables, Xj and Xj', identification requires the constraint jc = j'c, or an equivalent.

Correlated response error.  Often, variables are dependent by definition‑‑e.g., multiple indicators or repeated measures.  Failure to account for such dependence may lead to poor model fit and spurious latent classes.  The framework here gives a new way to accommodate such variables.  For example, suppose a researcher has two indicators (X1 and X2) of one construct and two indicators (X3 and X4) of a second construct.  The constructs are assumed conditionally independent, but the alternative indicators for each conditionally dependent.  The model is handled here as the partitioning {X1, X2} {X3, X4} for each latent class.

For K > 2, this method can make either common or varying

thresholds assumptions; if the latter (or when K = 2), it is equivalent to relaxing conditional independence in a standard LCA model; if the former, it does so for a restricted LCA model. 

Hagenaars (1988) gives excellent coverage of other methods for modeling correlated error in LCA.  He and others (e.g., Espeland & Handelman, 1989) suggest a loglinear modeling approach.  With dichotomous data, the loglinear and MLT approaches for modeling conditional dependence produce equivalent results.  With K > 2, though, the present approach is more economical.  For example, with K = 4, one  term expresses association of two variables within a latent class.  By comparison, a corresponding loglinear model would need nine interaction terms.

The  parameters, or the tetra/polychoric correlations derived from them, also express degree of conditional dependence in a way more familiar and readily interpretable than a loglinear interaction term.  Further, one can meaningfully place equality restrictions on different  parameters, either within or across latent classes; such is not generally true for loglinear interaction terms.

Confirmatory Factor Models.  Given, say, six items, consider the partitioning {X1, X2, X3} {X4, X5, X6}, the items being grouped by a priori substantive knowledge--i.e., the first three presumed to measure one construct and the second three another construct.  Application of the MLT approach to this partitioning corresponds to a confirmatory two‑factor latent trait model within each latent class where factors are orthogonal.  Thus, the methods here can confirm simple multi-factor models where, within each class, items load on one and only one factor and factors are independent.

Hybrid Models.  Yamamoto (1989) used the term "hybrid model" for a mixture such that one latent class conforms to a latent trait model and another to a standard LCA model.  For, say, three variables, we can model this as {X1, X2, X3} for one latent class, and {X1} {X2} {X3} for the second latent class.  
Other variations on this approach are clearly possible within the present framework.

5  EXAMPLES

Example 1.  Example data come from a study of student substance use in Winston-Salem, North Carolina (Uebersax, 1994).  Students completed yearly anonymous surveys with items on substance use, deviant behavior, and personality.  We consider here reported liquor, cigarette, and marijuana use (Table 1) by male 11th and 12 graders.  For each substance, the investigators added two, behaviorally anchored, 5-level items (Use of substance ever and Use of substance in the last 30 days; responses on each item were assigned integer scores that ranged from 1 = no use to 5 = the highest level of use), and arbitrarily trichotomized each sum to give levels of 1 = low use, 2 = intermediate use, and 3 = high use of the substance.  Trichotomization was accomplished by applying cut values, corresponding roughly to the 33rd and 67th percentile scores.

It would also have been reasonable to apply, say, a five‑level categorization to the data, since the original items had five levels--in general, reducing the number of ordered categories leads to loss of information.  Three levels were chosen so that the observed crossclassfication table would be sufficiently non‑sparse (free of 0 cells).  With sparse tables, the G2 statistic may not have a chi‑squared distribution (see e.g., Agresti & Yang, 1986), though models can still be compared using the Akaike information criterion (AIC), Schwarz' Bayes information criterion (BIC), or similar parsimony indices (Bozdogan, 1987; Sclove, 1987).

Only cases with responses to all six original items were analyzed (N = 824).

───────────────────────────────────────
Insert Tables 1 and 2 about here

───────────────────────────────────────
Table 2 summarizes the fit of several latent structure models to the data.  The LCA models were estimated with PANMARK (van de Pol, Langeheine, & de Jong, 1989).  All others were estimated with FORTRAN programs (e.g., Uebersax, 1993b, 1998) that use STEPIT (Chandler, 1969), a gradient‑based, derivative-free, maximization algorithm, for ML estimation. 

The LTA, LDA, and LLCA models are versions of the "marginal ML" IRT model (Bock & Aitkin, 1981) with a unidimensional latent trait.  They differ only in the assumed shape of the latent trait distribution, g():  for LTA, a single normal distribution; for LDA, a univariate mixture of normal distributions; for LLCA, a discrete distribution, associating C densities with C latent trait levels (latent class locations).  All can be estimated via Eqs. (5) and (6), with substitution of the appropriate density function g() for (c).  For these models, normal ogive response functions and Samejima's (1969; 1972) graded response method--i.e., the approach of Eq. (6)--for modeling ordered response levels were used.  The LDA model assumed equal latent trait variances for both components.

The nonfit of the 2- and 3-class LCA and PLCA models means that either more latent classes are required (increasing the likelihood of spurious latent classes and complicating interpretation; and note there are insufficient df for a 4-class LCA model), or else one must relax conditional independence assumptions.  The nonfit of the LLCA, LTA, and LDA models implies lack of a unidimensional latent trait.

MLT* denotes the MLT model with varying thresholds.  Neither the 2-class MLT nor 2-class MLT* models fit well.  The 3‑class MLT model overfit the data.  Model 12, which simplified the 3-class MLT model by assuming equal jc across j in Classes 1 and 3 (i.e., j1 = 1 and j3 = 3), fit well.

───────────────────────────
Insert Table 3 about here

───────────────────────────
Table 3 shows parameter estimates for Model 12.  Class 1, with centroid fixed at {0, 0, 0}, suggests a generally low-to-moderate use group.  Classes 2 and 3 both show higher levels of use of both liquor and marijuana.  Class 2 also shows comparatively high use of cigarettes; however the low centroid for cigarette use in Class 3 (-.870) implies very low use of cigarettes in this group; knowing why these students avoid cigarettes might help in motivating them to avoid the other substances as well.

In Class 1 the estimated polychoric correlation between any two items is .987  .987 = .974.  In Class 3, the corresponding value is also fairly high‑-.880  .880 = .774.  Thus results for both these groups are consistent with the existence of a within-class latent trait of "general substance use."  In Class 2, however, cigarette and marijuana use appear correlated, but neither one appears strongly correlated with liquor use.

The results suggest possible qualitative differences among latent classes.  Further research might aim to find psychological or demographic variables that differentiate them.  Students could be assigned to most likely latent class using the recruitment probabilities (cps|c/cps|c; see Lazarsfeld & Henry, 1968).  Discriminant analysis might then be used to predict latent class membership from exogenous variables (Uebersax, 1994).

Example 2.  This example compares the results for MLT and mixed Rasch models.  The data analyzed (Table 4), from the same study as the previous example, summarize co‑occurrence of five problem behaviors:  (1) suspension from school, (2) property damage, (3) fighting, (4) trouble with parents, and (5) trouble with police.  The survey items from which the data come were originally coded:  behavior occurred 1 = never, 2 = once, 3 = two or more times in the previous 12 months.  For this example, response levels 2 and 3 were combined.  Results for N = 834 students who completed all five items were analyzed.

───────────────────────────────────────
Insert Tables 4 and 5 about here

───────────────────────────────────────
Table 5 summarizes the fit of various latent structure models, each defined and estimated here as in Example 1, to the data.  Neither the standard 2‑ and 3‑class LCA models, nor the LTA model fit the data.  However, both a 2‑component MLT and 2‑component MLTb model fit.  The (MLTb ‑ MLT) comparison is not significant (G2 = 13.2 - 5.3 = 7.9, 18 - 10 = 8 df, p > .10), implying homogeneous within‑class 's.

Table 6 shows relative threshold (tj ‑ jc) estimates for the MLTb model. (Note that a smaller value for a relative threshold corresponds to a higher probability of displaying the deviant behavior.)  In the larger latent class (c = 1), there is a greater probability of trouble with parents and police, and a slightly greater likelihood of property damage.  In the smaller latent class (c = 2), there is a greater likelihood of being suspended and of fighting.

───────────────────────────
Insert Table 6 about here

───────────────────────────
A two‑class MIRA model (estimated with the MIRA program of Rost and von Davier, 1992) fits nearly the same as the MLTb model; estimated class prevalences (c) are very similar for the two models.  For comparison, MLTb relative thresholds were rescaled to the same mean and standard deviation as the MIRA thresholds, for c = 1 and c = 2 separately, and their signs reversed (in the MIRA model, thresholds reflect item "easiness," not difficulty).  The results, in Table 6, agree well with the MIRA thresholds.

Thus, here the MLTb and MIRA models give essentially the same results.  One difference, though, is that, with the MLT approach, the (MLTb ‑ MLT) comparison provides a statistical test of the assumption of homogeneous within‑class 's.  For more complex models, i.e., those with K > 2, C > 2, or, of course, with 2-parameter MLT models, one would expect greater differences between the MLT and MIRA models.

6  FINAL COMMENTS

There is much more to this class of models than a single paper can explore.  Generalized extension of the approach to multidimensional latent traits (Bock & Aitkin, 1981) is one possible area for further research.  Another is improved estimation algorithms.  For example, an EM‑type algorithm might proceed as follows:

E‑step.  Assign cases to latent classes, "probabilistically":  a case is partially assigned to each latent class c in proportion to cps|c/cps|c (initially, cases are assigned randomly).  Then calculate the expected crossclassification frequencies across the J items for each latent class c.

M‑step.  With each resulting expected crossclassification frequency table:  (a) estimate the within‑class tetra/polychoric correlation matrix; (b) perform ML factor analysis (with or without allowance for correlated error) on the tetra/polychoric correlation matrix to estimate jc terms; and (c) apply the probit function to 1‑way marginal proportions to estimate relative thresholds for the J items.  Steps (b) and (c) follow the LISREL‑based IRT method illustrated by Joreskog and Sorbom (1988).

Finally, the methods here are extendable to combinations of binary, ordered category, and continuous measures.  Jorgensen and Hunt (1995) describe some related methods for continuous measures based on partitioning of variables.
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Table 1.  

Crossclassification Frequencies for Levels of Liquor, Cigarette, And Marijuana Use by 824 Male High School Students

-----------------------------------------------------------
                        Liquor use

        1                    2                    3

-----------------   ------------------   -------------------
Cigar‑ Mari‑         Cigar‑ Mari‑         Cigar‑ Mari‑ 

ette   juana         ette   juana         ette   juana    

 use    use     f     use    use     f     use    use     f

------------------------------------------------------------
  1      1    181      1      1     65      1      1     31

  1      2      4      1      2     16      1      2     10

  1      3      2      1      3      5      1      3     13

  2      1     44      2      1     46      2      1     35

  2      2      3      2      2     28      2      2     15

  2      3      0      2      3      1      2      3     11

  3      1     17      3      1     22      3      1     38

  3      2     12      3      2     34      3      2     53

  3      3      7      3      3     27      3      3    104

------------------------------------------------------------
NOTE:  1 = low use; 2 = intermediate use; 3 = high use.

Table 2.

Fit of Several Latent Structure Models Applied to 

Table 1 Data

---------------------------------------------------
                     No. of   No. of

Model                compo‑   para‑

 No.   Model type    nents    meters    G2      dfa
---------------------------------------------------
  1    LCA             2       13      94.4     12    

  2    LCA             3       20      16.5      5    

  3    PLCA            2       10     105.9     15    

  4    PLCA            3       13      41.2     12    

  5    LLCA            2       10     105.9     15    

  6    LLCA            3       12      51.1     13    

  7    LTA             1        9      55.8     16       

  8    LDA             2       11      51.0     14    

  9    MLT             2       16      22.3      9    

 10    MLT* 

   2       19      16.0      6    

 11    MLT             3       23       1.6b
    2    

 12    MLT + j1 = 1,

        j3 = 3 
   3       19       4.3b
    6    

---------------------------------------------------
a One df lost due to 0 observed frequency in data.

b p > .10.

Table 3.  

Parameter Estimates for Model 12 of Table 2

------------------------------------------------
Para‑                     Para‑

meter     Estimate        meter     Estimate

------------------------------------------------
1 
  .248   (  ‑‑)a
    t22     .085   (.065)

2 
  .596   (.200)  
    t23     .830   (.059)

3  
  .157   (.079)  
    t32     .517   (.169)

                       
   t33
   1.194   (.227)

1  
  .987   (.017)

12 
  .457   (.068)  
    12     .792   (.102)

22 
  .995   (  ‑‑)b 
    22
     .873   (.063)

32
  .989   (.034)  
    32
     .420   (.226)

3  
  .880   (.035)

                      
    13
     .559   (.243)

t12 
  .073   (.070)  
    23
    -.870   (.244)

t13 
  .880   (.080)  
    33
     .644   (.401)

------------------------------------------------
NOTE:  j = 1, 2, 3 for Liquor, Cigarettes, 

Marijuana, respectively.  Estimated standard 

errors in parentheses.

a Parameter linear combination of other parameters.

b Parameter fixed during estimation.

Table 4.  

Crossclassification Frequencies 

for Five Student Problem 

Behaviors (N = 834)

---------------------------
                Item 4

              1         2

           ------    ------
Item       Item 5    Item 5

1 2 3      1    2    1    2

---------------------------
1 1 1    279   24   49   21

1 1 2     52   10   18    9

1 2 1     49   11   23   21

1 2 2     22   10   24   28

2 1 1     19    3    9    5

2 1 2     21    9    8   10

2 2 1     12    1    8    9

2 2 2     12   11   12   35

---------------------------
Table 5.  

Fit of Several Latent Structure Models Applied 

to Table 4 Data

----------------------------------------------
               No. of

               compo‑  No. of

Model   Type   nents   params.    G2       df

----------------------------------------------
  1     LCA      2       11      49.4      20

  2     LCA      3       17      26.3      14

  3     LTA      1       10      33.7      21

  4     MLT      2       21       5.3a
   10

  5     MLTb     2       13      13.2a
   18

  6     MIRA     2       13      13.0a
   18

----------------------------------------------
a p > .10.

Table 6.  

Comparison of MLTb and MIRA Model Results

------------------------------------------------------------
                                    MLTb

                   MLTb          (tj ‑ jc)         MIRA

                 (tj ‑ jc)       rescaleda      thresholds

              -------------    ------------    -------------  

j  Item       c = 1   c = 2    c = 1  c = 2    c = 1  c = 2

------------------------------------------------------------
1  suspend
 1.123    .337    ‑1.29    .26    ‑1.28    .30

2  property
  .372    .440      .53    .03      .54    .01

3  fights    
  .694   ‑.051     ‑.25   1.14     ‑.22   1.13

4  parents 
  .227    .705      .89   ‑.57      .92   ‑.67

5  police  
  .543    .828      .12   ‑.85      .04   ‑.77

------------------------------------------------------------
c          
  .621    .379       ‑‑     ‑‑      .61    .39

c          
  .768    .567       ‑‑     ‑‑       ‑‑     ‑‑

------------------------------------------------------------
aSee text for explanation.

